Application Of Computer Vision Detection Of Apples And Oranges Using Python Language
Abstract
The Indonesian nation, which is quite large, has the natural resources and potential manpower needed to build the archipelago's fruit industry. The climate and good weather cause Indonesia to have various types of fruits. Production of fruit crops in Indonesia in 2021 based on the website of the Central Statistics Agency, Indonesia produces millions of tons of fruit in total. In the fruit production processing industry, the quality of each fruit is generally checked, whether it is feasible to proceed to the processing stage or not. This check is carried out by employees manually without the help of tools. Sophisticated programs or systems can perform this task automatically. Artificial intelligence, which includes object recognition, has advanced as technology advances. It can identify items in an image. Object detection is one of the fields in computer vision. The use of computer vision technology allows machines to see and identify items in their environment similar to humans. By applying real-time object detection to an application, it can help sort out fruits that deserve to be processed in real-time through a camera that is installed in such a way. Based on the accuracy and the explanation result, the passing fruit will be detected automatically. The author uses a fruit image dataset with two object classes: fresh fruit and non-fresh fruit. The results obtained a high level of accuracy in the detection of apples and oranges.
Downloads
References
[2.] Gaffar, Achmad Fanany Onnilita. dkk. 2021. Artificial Intelligence Konsep Fundamental dan Terapan. Malang: Media Nusa Creative (MNC Publishing)
[3.] Sewak, Mohid. dkk. 2018. Practical Convolutional Neural Networks Implement Advanced Deep Learning Models Using Python. Birmingham: Packt Publishing
[4.] Putro, Eko Cahyono dan Awangga, Rolly Maulana. 2020. Tutorial Gender Classification Using The You Look Only Once (Yolo). Bandung: Kreatif Industri Nusantara
[5.] Setiawan, Gabriella Alicia dan Evelyn Vania. 2022. Praktek Pemrograman C++ dan Python. Semarang: SCU Knowledge Media
[6.] Prince, Simon J. D. 2012. Computer Vision Models, Learning, and Inference. New York: Cambridge University Press
[7.] Kadir, Abdul. 2019. Langkah Mudah Pemrograman OpenCV & Python. Jakarta: PT. Elex Media Komputindo
[8.] Batubara, Nur Arkhamia dan Rolly Maulana Awangga. 2020. Tutorial Object Detection Plate Number With Convolution Neural Network (CNN). Bandung: Kreatif Industri Nusantara
[9.] Rayendra. dkk. 2021. Kecerdasan Buatan. Kubung: Mitra Cendekia Media
[10.] Irawan, Muhammad Dedi. 2022. Flowchart dan Pseudo-Code: Implementasi Notasi Algoritma dan Pemrograman. Bandung: Media Sains Indonesia
[11.] Zumstein, Felix. 2021. Python For Excel. United Of States: O’Reilly Media, Inc.
[12.] Susanto, R. dan Andriana, A. D. 2016. Perbandingan Model Waterfall dan Prototyping Untuk Pengembangan Sistem Informasi. Majalah Ilmiah UNIKOM
[13.] Z. Azmi, M. Zarlis, and V. Yasin, “Perceptron Dengan Input Citra Untuk Pengenalan Huruf Rusia,” Pros. SeNTIK STI&K, vol. 2, pp. 111–116, 2018, [Online]. Available: https://ejournal.jak-stik.ac.id/files/journals/2/articles/sentik2018/3156/3156.pdf
[14.] R. Buaton, M. Zarlis, and V. Yasin, “Konsep Data Mining Dalam Implementasi,” Jakarta: Mitra Wacana Media, vol. 1, 2021, [Online]. Available: https://www.mitrawacanamedia.com/Konsep-Data-Mining-dalam-Implementasi
[15.] M. Awaludin et al., “Optimization of Naïve Bayes Algorithm Parameters for Student Graduation Prediction at Universitas Dirgantara Marsekal Suryadarma,” J. Inf. Syst. Informatics Comput., vol. 6, no. 1, pp. 91–106, 2022, doi: 10.52362/jisicom.v6i1.785.
[16.] H. Heriyanto, V. Yasin, and A. B. Yulianto, “Vipos application development design,” J. Eng. Technol. Comput., vol. 1, no. 1, pp. 19–31, 2022, [Online]. Available: https://journal.binainternusa.org/index.php/jetcom/article/view/3
[17.] H. Hamidah, V. Yasin, R. Hartawan, and A. Z. Sianipar, “Designing a warehouse management information system:(Cases Study: PT. Fatijja Digital Indonesia),” J. Math. Technol., vol. 1, no. 2, pp. 91–103, 2022, [Online]. Available: http://journal.binainternusa.org/index.php/matech/article/view/75
[18.] V. Yasin, M. Zarlis, O. S. Sitompul, and P. Sihombing, “Hierarchical Of Grid Partition (HGP) For Measuring The Similarity Of Data In Optimizing Data Accuracy,” Webology, vol. 19, no. 2, pp. 1495–1514, 2022, [Online]. Available: https://www.webology.org/abstract.php?id=1369
This work is licensed under a Creative Commons Attribution 4.0 International License.