Development Of Data Mining Software Using Association Techniques Based On Apriori Algorithm Method
Abstract
Database is a place to store transaction data in an information system that can be developed as a source of knowledge for decision making in an organization. One of the database processing developments is the method of association between data. This technique of processing or extracting data is known as data mining, one of which is association rules. This technique is widely adopted to develop methods, one of which is the Apriori Algorithm Method. This Apriori algorithm runs with the aim of searching for the maximum frequent itemset. This function forms new association rules that are useful for multiplying data into useful information in decision making. Based on the explanation of the Apriori Algorithm, it is then translated into computer software. The software developed is based on cloud computing which can be run online via the web on the internet. The software developed uses the PHP programming language with a MySQL database. Software under development in research can be used in various systems by adjusting the data used. The data mining process using association techniques works according to the number of transaction data items, minimum confidence, minimum support, and number of transactions. The time used in the calculation works according to the minimum value of support and confidence, the association function automatically increases and affects the time used to produce the required information.
Downloads
References
[2.] Pramudiono, I. (2006). “Apa itu data mining?.” http://datamining.japati.net/. di akses 26 Mei 2022.
[3.] Sucahyo, Yudo Giri. 2003. Data mining – Menggali Informasi Yang terpendam.(Online) (http://ikc.cbn.net.id/populer/yudho/yudho-datamining.zip, diakses pada 21 Mei 2021)
[4.] Chung, Christina.Applying Data Mining to Data Security,(Online), (http://sirius.cs.ucdavis.edu/teaching/289F/ ,diakses pada 21 Mei 2007).
[5.] Adam, Rinaldi. 2004. Flowcharting, (Online), (http://www.cic.ac.id/modulkuliah/download/Flowchart%201_files.htm, diakses pada 21 Mei 2007)
[6.] Fathansyah.2001.Basis Data.Bandung: Penerbit Informatika.
[7.] Handojo, Andreas. Aplikasi Data Mining Untuk Meneliti Asosiasi Pembelian Item Barang Di Supermarket Dengan Metode Market Basket Analysis. Penulisan penelitian. Tidak diterbitkan
[8.] Jiawei Han and Micheline Kamber.Data mining, concept and techniques.(Online) (http://www. cs.sfu.ca, diakses pada 21 Mei 2007)
[9.] Kadir, Abdul.2003. Dasar Pemrograman Web Dinamis Menggunakan PHP.Yogyakarta. PT. Andi.
[10.] Microsoft Corporation. OLEDB for Data Mining draft specivication, version 0.9.(Online) (http://www.microsoft.com/data/oledb/dm, diakses pada 21 Mei 2007).
[11.] Nugroho, Bunafit.2004.Aplikasi Pemrograman Web Dinamis Dengan PHP Dan MySQL.Yogyakarta:Gava Media.
[12.] Prasetyo, Didik Dwi.2005.Solusi Menjadi web Master Melalui Manajemen web Dengan PHP.Jakarta:Elex Media Komputindo
[13.] Rantzau, Ralf.Exrended Concept For Association Rules Discovery.Penulisan Penelitian.Tidak diterbitkan
[14.] Son, Nguyen Hung.Transaction data analysis and association rules.(Online) (http://www.mimuw.edu.pl/~son/datamining, diakses pada 21 Mei 2007)
[15.] Syukur, Mark Ade. 1999. Aplikasi Web dengan PHP. Penulisan Penelitian. Tidak diterbitkan.
This work is licensed under a Creative Commons Attribution 4.0 International License.