Optimization of Naïve Bayes Algorithm Parameters for Student Graduation Prediction at Universitas Dirgantara Marsekal Suryadarma

  • Muryan Awaludin Universitas Dirgantara Marsekal Suryadarma
  • Verdi Yasin STMIK Jayakarta
  • Mega Wahyuningsih Universitas Dirgantara Marsekal Suryadarma, Indonesia

Abstract

The Information Systems Study Program at Unsurya is a new department and only a few graduate students. Based on data obtained from graduates of the 2018/2019 academic year, 41 students graduated, including 26 students who experienced delays in taking their studies. A system that can predict student graduation is needed so that the Information Systems department can produce more student graduations than before. By optimizing the parameters of the Naïve Bayes algorithm, it can be applied in predicting graduation by utilizing previous student graduation data, the attributes used are gender, age, sks, gpa, and student status. The results of research testing using Rapid Miner 9.8 with 41 training data and 25 testing data, yielding 96% accuracy, 90.91% recall, and 100% precision.

Downloads

Download data is not yet available.

Author Biographies

Muryan Awaludin, Universitas Dirgantara Marsekal Suryadarma

Faculty of Industrial Technology

Verdi Yasin, STMIK Jayakarta

Department of Informatics Engineering

Mega Wahyuningsih, Universitas Dirgantara Marsekal Suryadarma, Indonesia

Faculty of Industrial Technology

References

[1] M. Broto Legowo and B. Indiarto, “Model Sistem Penjaminan Mutu Berbasis Integrasi Standar Akreditasi BAN-PT dan ISO 9001:2008,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 2, p. 90, 2017.
[2] A. I. Adekitan and O. Salau, “The impact of engineering students’ performance in the first three years on their graduation result using educational data mining,” Heliyon, vol. 5, no. 2, p. e01250, 2019.
[3] M. K. Diqy Fakhrun Shiddieq, S.T. and Patricia, “Implementasi Algoritma Data Mining Naive Bayes untuk Prediksi Kelulusan Mahasiswa,” no. 456, pp. 8–13, 2020.
[4] A. Syarifah and M. A. Muslim, “Pemanfaatan Naïve Bayes Untuk Merespon Emosi Dari Kalimat Berbahasa Indonesia,” Unnes J. Math., vol. 4, no. 2, 2015.
[5] I. . K. S. Putu Sainanda Cahyani Moonallika, Ketut Queena Fredlina, “Penerapan Data Mining Untuk Memprediksi Kelulusan Mahasiswa Menggunakan Algoritma Naive Bayes Classifier ( Studi Kasus STMIK Primakara ),” J. Ilm. Komput., vol. 6, no. 1, pp. 47–56, 2020.
[6] A. Saleh, “Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” Creat. Inf. Technol. J., vol. 2, no. 3, pp. 207–217, 2015.
[7] D. L. Olson and D. Delen, Advanced Data Mining Techniques, vol. 53, no. 9. 2008.
[8] Firman Azhar Riyadi, “Implementasi Metode naive Bayes Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu Prodi Informatika (Studi Kasus : Universitas Teknologi Yogyakarta),” pp. 1–9, 2020.
[9] T. Daniel, Uncovering Patterns in Student Work. 2015.
[10] L. Setiyani, M. Wahidin, D. Awaludin, and S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review,” Fakt. Exacta, vol. 13, no. 1, pp. 38–47, 2020.
[11] E. Sutoyo and A. Almaarif, “Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 95–101, 2020.
[12] J. Han and M. Kamber, Data mining: Data mining concepts and techniques. 2006.
[13] K. Sihotang and R. Ghaniy, “Penerapan Metode Naïve Bayes Classifier Untuk Penentuan Topik Tugas Akhir Pada Website Perpustakaan STIKOM Binaniaga,” vol. 9, no. 2009, pp. 63–72, 2019.
[14] E. Karyadiputra, S. Kom, and M. Kom, “ANALISIS ALGORITMA NAIVE BAYES UNTUK KLASIFIKASI STATUS KESEJAHTERAAN RUMAH TANGGA KELUARGA BINAAN SOSIAL,” vol. 7, no. 4, pp. 199–208, 2016.
[15] P. Phoenix, R. Sudaryono, and D. Suhartono, “ScienceDirect ScienceDirect Classifying Promotion Images Using Optical Character Recognition and Naïve Bayes Classifier,” Procedia Comput. Sci., vol. 179, no. 2020, pp. 498–506, 2021.
[16] V. Balakrishnan and W. Kaur, “ScienceDirect ScienceDirect String-based Multinomial Naïve Bayes for Emotion Detection String-based Multinomial Naïve Bayes for Emotion Detection among Facebook Diabetes Community among Facebook Diabetes Community,” Procedia Comput. Sci., vol. 159, pp. 30–37, 2019.
[17] C. Cassidy, “Parameter tuning Naïve Bayes for automatic patent classification ✩,” World Pat. Inf., vol. 61, no. June 2019, p. 101968, 2020.
[18] M. Awaludin, “Penerapan Sistem Piranti Lunak Personal Finance Berbasis Android untuk Peningkatkan Kualitas Ekonomi Individu,” J. Sist. Inf. Univ. Suryadarma, vol. 3, no. 2, pp. 107–114, 2018.
[19] J. Han, M. Kamber, and J. Pei, Data mining: Data mining concepts and techniques (Third Edition). 2012.
[20] S. Tufféry, Data Mining and Statistics for Decision Making. 2011.
[21] A. R. Febie Elfaladonna, “Analisa Metode Classification-Decission Tree Dan Algoritma C.45 Untuk Memprediksi Penyakit Diabetes dengan Menggunakan Aplikasi Rapid Miner,” Sci. Inf. Technol., vol. 2, no. 1, pp. 10–17, 2019.
[22] D. Iskandar and Y. K. Suprapto, “Perbandingan Akurasi Klasifikasi Tingkat Kemiskinan Antara Algoritma C 4.5 dan Naive Bayes,” J. Ilm. NERO, vol. 2, no. 1, pp. 37–43, 2015.
[23] D. Sartika and D. Indra, “Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” J. Tek. Inform. Dan Sist. Inf., vol. 1, no. 2, pp. 151–161, 2017.
[24] P. Harmianty, “Aplikasi Prediksi Kelulusan Tepat Waktu Mahasiswa Menggunakan Algoritma C4.5,” pp. 1–9, 2017.
[25] I. H. Witten, E. Frank, and M. A. Hall, Data Mining Third Edition. Elsevier Inc., 2011.
[26] Syarli and A. A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” J. Ilm. Ilmu Komput., vol. 2, no. 1, pp. 22–26, 2016.
Published
2022-06-17
How to Cite
AWALUDIN, Muryan; YASIN, Verdi; WAHYUNINGSIH, Mega. Optimization of Naïve Bayes Algorithm Parameters for Student Graduation Prediction at Universitas Dirgantara Marsekal Suryadarma. JISICOM (Journal of Information System, Informatics and Computing), [S.l.], v. 6, n. 1, p. 91-106, june 2022. ISSN 2597-3673. Available at: <https://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/785>. Date accessed: 02 feb. 2023. doi: https://doi.org/10.52362/jisicom.v6i1.785.

Most read articles by the same author(s)

1 2 > >>