APPLICATION OF THE K-MEAN ALGORITHM IN DETERMINING THE RIGHT PROFESSION FOR INFORMATION TECHNOLOGY STUDENTS

Penerapan Algoritma K-mean dalam Menentukan Profesi yang Tepat bagi Mahasiswa Turusan Teknologi Informasi

  • Dhia Marsya Assyafiq Universitas Nusa Mandiri, Jakarta
  • Astriana Mulyani Universitas Nusa Mandiri, Jakarta

Abstract

This research focuses on interests in the right field of work for information technology students majoring in Informatics. Many graduate students majoring in informatics work not in accordance with the knowledge taken during lectures. Of course this causes problems in determining alumni who work in accordance with the knowledge pursued. From these problems this research is to determine the right job for information technology students, especially informatics majors, help students make decisions in determining the appropriate field of work and help focus student learning so that the field of work is passionate and the efforts made are in accordance with the chosen path. The method used in this research is to collect data on the field of work that is in accordance with the information technology major obtained from making observations, giving questionnaires and conducting literature studies. The data obtained is processed using the K-Means algorithm. The K-Means algorithm is a method of grouping data by grouping data into different groups in an iterative manner, by minimizing the average distance of the data to each group. The results of the study show the results of grouping the data into different groups from the data groups with low, medium and high interest. In this case it can be concluded that the resulting data can help computer engineering students determine the field of work.

Downloads

Download data is not yet available.

References

[1] R. D. Sinaulan, “Masalah Ketenagakerjaan Di Indonesia,” Ideas J. Pendidikan, Sos. dan Budaya, vol. 5, no. 1, p. 55, 2019, doi: 10.32884/ideas.v5i1.173.
[2] C. F. Kurnia, N. N. Yuwana, and A. P. Cahyani, “Pengembangan Jiwa Kewirausahaan di Kalangan Mahasiswa dengan Memanfaatkan Teknologi Digital,” Sinergitas Quadruple Helix E-bus. dan Fintech sebagai Daya Dorong Pertumbuhan Ekon. Lokal, pp. 188–192, 2018. [3] J. O. Ong, “Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university,” J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, pp. 10–20, 2013.
[4] R. V. Zwagery, “Kecemasan menghadapi dunia kerja pada mahasiswa fresh graduate pada masa pandemi Covid 19,” Pros. Temu Ilm. Nas. (TEMILNAS XII), no. Temilnas XII, pp. 10–14, 2020.
[5] I. W. Djatmiko, “Strategi Penulisan Skripsi, Tesis, Disertasi Bidang Pendidikan,” UNY Press, p. 160 hlm, 2018.
[6] G. A. Marcoulides, Discovering Knowledge in Data: an Introduction to Data Mining, vol. 100, no. 472. 2005.
[7] S. K. M. K. D. A. N. A. P. S. K. M. K. Amril Mutoi Siregar, DATA MINING: Pengolahan Data Menjadi Informasi dengan RapidMiner. CV Kekata Group.
[8] Aprilla Dennis, “Belajar Data Mining dengan RapidMiner,” Innov. Knowl. Manag. Bus. Glob. Theory Pract. Vols 1 2, vol. 5, no. 4, pp. 1–5, 2013, [Online]. Available: http://esjournals.org/journaloftechnology/archive/vol1no6/vol1no6_6.pdf%5Cnhttp://www.airccse.org/journal/nsa/5413nsa02.pdf.
[9] E. A. Novia, W. I. Rahayu, and C. Prianto, SISTEM PERBANDINGAN ALGORITMA K-MEANS DAN NAÏVE BAYES UNTUK MEMPREDIKSI PRIORITAS PEMBAYARAN TAGIHAN RUMAH SAKIT BERDASARKAN TINGKAT KEPENTINGAN. Kreatif.
[10] A. Wanto, Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis, 2020.
[11] Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.
[12] I. Darwanto and R. Fidiawati, “Implementasi Metode Case Based Reasoning dan K-Nearest Neighbor dalam Sistem Diagnosa Penyakit dan Hama pada Tanaman Karet,” Dunia Ilmu, vol. 1, no. 1, pp. 2021–2022, 2021, [Online]. Available: http://duniailmu.org/index.php/repo/article/view/19.
[13] A. F. Muhammad, “Klasterisasi Proses Seleksi Pemain Menggunakan Algoritma K-Means (Study Kasus : Tim Hockey Kabupaten Kendal),” Jur. Tek. Inform. FIK UDINUS, pp. 1–5, 2015.
[14] R. D. Kurniawati and I. Ahmad, “Sistem Pendukung Keputusan Penentuan Kelayakan Usaha Mikro Kecil Menengah Dengan Menggunakan Metode Profile Matching Pada Uptd Plut Kumkm Provinsi Lampung,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 74–79, 2021.
[15] F. Nur, M. Zarlis, and B. B. Nasution, “Penerapan Algoritma K-Means Pada Siswa Baru Sekolahmenengah Kejuruan Untuk Clustering Jurusan,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 1, no. 2, pp. 100–105, 2017, doi: 10.30743/infotekjar.v1i2.70.
[16] F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru,” Sistemasi, vol. 7, no. 3, p. 238, 2018, doi: 10.32520/stmsi.v7i3.388.
[17] Ediyanto, N. Mara, and N. Satyahadewi, “Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis,” Bul. Ilm. Mat. Stat. dan Ter., vol. 02, no. 2, pp. 133–136, 2013.
[18] A. F. Pakpahan et al., Metodologi Penelitian Ilmiah. Yayasan Kita Menulis, 2021.
[19] M. S. Drs. H. Restu, S. E. M. S. H. R. Marwan Indra Saputra, S. E. M. M. Aris Triyono, S. E. M. M. Suwaji, and S. I. P. Desi Amidasti, Metode Penelitian. Deepublish, 2021.
Published
2023-12-07
How to Cite
ASSYAFIQ, Dhia Marsya; MULYANI, Astriana. APPLICATION OF THE K-MEAN ALGORITHM IN DETERMINING THE RIGHT PROFESSION FOR INFORMATION TECHNOLOGY STUDENTS. JISICOM (Journal of Information System, Informatics and Computing), [S.l.], v. 7, n. 2, p. 241-249, dec. 2023. ISSN 2597-3673. Available at: <https://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/1239>. Date accessed: 28 feb. 2024. doi: https://doi.org/10.52362/jisicom.v7i2.1239.