PENERAPAN ALGORITMA METODE NAÏVE BAYES UNTUK PENENTUAN PENERIMAAN BANTUAN PROGRAM INDONESIA PINTAR (PIP)
(Studi Kasus SMP PGRI 1 CILACAP)
Abstract
The Smart Indonesia Program (PIP) through the Smart Indonesia Card (KIP) is a government program offered in the form of direct education financing to students (6-21 years). KIP is an improvement part of the Poor Student Assistance (BSM) program since the end of 2014. The target of PIP at SMP PGRI 1 Cilacap is still not well targeted, due to the lack of criteria for KKS recipients. Therefore, the author added criteria for KKS recipients in the research. This research was created based on previously existing data, namely 100 training data and 9 test data using the Naïve Bayes data mining method and with 6 attributes, namely parents' occupation, number of dependents, parents' income, KIP recipients, KPS recipients, KKS recipients. The accuracy test results obtained were 88.89% and the Recall calculation was 85.71%.
References
[2] O. Rini and S. O. Kunang, “Implementasi Data Mining Menggunakan Metode Naive Bayes Untuk Penentuan Penerima Bantuan Program Indonesia Pintar ( Pip ) ( Studi Kasus : Sd Negeri 9 Air Kumbang ),” Bina Darma Conf. …, pp. 714–722, 2021.
[3] P. A. Ani and A. Andri, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Mahasiswa Penerima Kip Pada Universitas Bina Darma,” Bina Darma Conf. Comput. Sci., pp. 172–180, 2022.
[4] R. Rachman and R. N. Handayani, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” J. Inform., vol. 8, no. 2, pp. 111–122, 2021.
[5] N. A. Khairudin et al., “Implementasi Sistem Informasi Pengelolaan Bantuan Warga Kampung Pulojahe Jakarta Timur Berbasis Web,” SELAPARANG J. Pengabdi. Masy. Berkemajuan, vol. 6, no. 1, p. 355, 2022.
[6] A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 452–458, 2023.
[7] M. H. Rifqo and A. Wijaya, “Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit,” Pseudocode, vol. 4, no. 2, pp. 120–128, 2017.
[8] T. Tundo and F. Mahardika, “Fuzzy Inference System Tsukamoto – Decision Tree C 4 . 5 in Predicting the Amount of Roof Tile Production in Kebumen,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 7, no. 2, pp. 533–544, 2023.
[9] T. Tundo and S. ’Uyun, “Konsep Decision Tree Reptree Untuk Melakukan Optimasi Rule Dalam Fuzzy Inference System Tsukamoto,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, 2022.
[10] Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022.
[11] D. Ariadi and K. Fithriasari, “Indonesian News Classification Using Naive Bayesian Classification Method and Support Vector Machine With Confix Stripping Stemmer,” J. Sains dan Seni ITS, vol. 4, no. 2, pp. 2337–3520, 2015.

This work is licensed under a Creative Commons Attribution 4.0 International License.