PENERAPAN ALGORITMA METODE NAÏVE BAYES UNTUK PENENTUAN PENERIMAAN BANTUAN PROGRAM INDONESIA PINTAR (PIP)

(Studi Kasus SMP PGRI 1 CILACAP)

  • Imansyah Priyanto Universitas Nahdlatul Ulama Al Ghazali Cilacap, Jawa Tengah
  • Elsa Mayorita Dewanti Universitas Nahdlatul Ulama Al Ghazali Cilacap
  • Tundo Tundo Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika (STIKOM CKI)
  • Muhammad Nurdin BPPTL – Kementerian Perhubungan
  • Roy Kasiono Sekolah Tinggi Ilmu Pelayaran (STIP)

Abstract

The Smart Indonesia Program (PIP) through the Smart Indonesia Card (KIP) is a government program offered in the form of direct education financing to students (6-21 years). KIP is an improvement part of the Poor Student Assistance (BSM) program since the end of 2014. The target of PIP at SMP PGRI 1 Cilacap is still not well targeted, due to the lack of criteria for KKS recipients. Therefore, the author added criteria for KKS recipients in the research. This research was created based on previously existing data, namely 100 training data and 9 test data using the Naïve Bayes data mining method and with 6 attributes, namely parents' occupation, number of dependents, parents' income, KIP recipients, KPS recipients, KKS recipients. The accuracy test results obtained were 88.89% and the Recall calculation was 85.71%.

Author Biographies

Imansyah Priyanto, Universitas Nahdlatul Ulama Al Ghazali Cilacap, Jawa Tengah

Teknik Informatika

Elsa Mayorita Dewanti, Universitas Nahdlatul Ulama Al Ghazali Cilacap

Teknik Informatika

Tundo Tundo, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika (STIKOM CKI)

Teknik Informatika

Roy Kasiono, Sekolah Tinggi Ilmu Pelayaran (STIP)

Ketatalaksanaan Angkutan Laut dan Pelabuhan

References

[1] T. Tundo and S. Uyun, “Penerapan Decision Tree J48 Dan Reptree Dalam Menentukan Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Fuzzy Tsukamoto,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 483–492, 2020.
[2] O. Rini and S. O. Kunang, “Implementasi Data Mining Menggunakan Metode Naive Bayes Untuk Penentuan Penerima Bantuan Program Indonesia Pintar ( Pip ) ( Studi Kasus : Sd Negeri 9 Air Kumbang ),” Bina Darma Conf. …, pp. 714–722, 2021.
[3] P. A. Ani and A. Andri, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Mahasiswa Penerima Kip Pada Universitas Bina Darma,” Bina Darma Conf. Comput. Sci., pp. 172–180, 2022.
[4] R. Rachman and R. N. Handayani, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” J. Inform., vol. 8, no. 2, pp. 111–122, 2021.
[5] N. A. Khairudin et al., “Implementasi Sistem Informasi Pengelolaan Bantuan Warga Kampung Pulojahe Jakarta Timur Berbasis Web,” SELAPARANG J. Pengabdi. Masy. Berkemajuan, vol. 6, no. 1, p. 355, 2022.
[6] A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 452–458, 2023.
[7] M. H. Rifqo and A. Wijaya, “Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit,” Pseudocode, vol. 4, no. 2, pp. 120–128, 2017.
[8] T. Tundo and F. Mahardika, “Fuzzy Inference System Tsukamoto – Decision Tree C 4 . 5 in Predicting the Amount of Roof Tile Production in Kebumen,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 7, no. 2, pp. 533–544, 2023.
[9] T. Tundo and S. ’Uyun, “Konsep Decision Tree Reptree Untuk Melakukan Optimasi Rule Dalam Fuzzy Inference System Tsukamoto,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, 2022.
[10] Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022.
[11] D. Ariadi and K. Fithriasari, “Indonesian News Classification Using Naive Bayesian Classification Method and Support Vector Machine With Confix Stripping Stemmer,” J. Sains dan Seni ITS, vol. 4, no. 2, pp. 2337–3520, 2015.
Published
2024-04-25
How to Cite
PRIYANTO, Imansyah et al. PENERAPAN ALGORITMA METODE NAÏVE BAYES UNTUK PENENTUAN PENERIMAAN BANTUAN PROGRAM INDONESIA PINTAR (PIP). Jurnal Manajamen Informatika Jayakarta, [S.l.], v. 4, n. 2, p. 162-172, apr. 2024. ISSN 2797-0930. Available at: <https://journal.stmikjayakarta.ac.id/index.php/JMIJayakarta/article/view/1355>. Date accessed: 25 july 2025. doi: https://doi.org/10.52362/jmijayakarta.v4i2.1355.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.