PENERAPAN METODE REGRESI LINEAR SEDERHANA DALAM MEMPREDIKSI TANDAN BUAH SEGAR MASUK DI PKS DOLOK ILIR

  • Fahrizal Rizki STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
  • Eka Irawan STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
  • M. Safii STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia

Abstract

Oil palm is a very important crop in the agricultural sector today. This is because oil palm is the country's largest foreign exchange earner as well as a driver of the people's economy and plays a role in employment. Dolok Ilir Palm Oil Mill is one of the business units of PT Perkebunan Nusantara 4 which is engaged in the palm oil sector. As a plantation that has a palm oil processing plant, PKS Dolok Ilir also processes palm oil from other PTPN IV plantation units. Fresh fruit bunches entering the Dolok Ilir PKS are still difficult to predict. The high number of incoming Fresh Fruit Bunches and limited processing capacity causes some fruits cannot be processed on the same day, this will have an impact on reducing the quality of Fresh Fruit Bunches (FFB) and the quality of Crude Palm Oil (CPO). From these problems, an algorithm is needed to predict incoming Fresh Fruit Bunches (FFB) at the Dolok Ilir PKS.

References

[1] Ismai, “Perkebunan Kelapa Sawit Indonesia Dalam Perspektif Pembangunan Berkelanjutan,” J. Ilmu-Ilmu Sos. Indones., vol. 43, no. 1, pp. 81–94, 2017, [Online]. Available: http://jmi.ipsk.lipi.go.id/index.php/jmiipsk/article/view/717/521
[2] A. Yunus, M. Akbar, and Andri, “Data Mining Untuk Memprediksi Hasil Produksi Buah Sawit Pada Pt Bumi Sawit Sukses (Bss) Menggunakan Metode K-Nearest Neighbor,” Bina Darma Conf. Comput. Sci., pp. 198–207, 2019.
[3] A. Yordan, T. N. Putri, and D. H. Lamkaruna, “Peramalan Penerimaan Mahasiswa Baru Universitas Samudra Menggunakan Metode Regresi Linear Sederhana,” J. Tek. Inform., vol. 2, no. 1, pp. 21–27, 2019, doi: 10.52046/j-tifa.v2i1.237.
[4] F. Ginting, E. Buulolo, and E. R. Siagian, “Implementasi Algoritma Regresi Linear Sederhana Dalam Memprediksi Besaran Pendapatan Daerah (Studi Kasus: Dinas Pendapatan Kab. Deli Serdang),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 274–279, 2019, doi: 10.30865/komik.v3i1.1602.
[5] T. Ajeng Afifah Muhartini, Oman Sahroni, Septi Dwi Rahmawati and I. M. Febrianti, “ANALISIS PERAMALAN JUMLAH PENERIMAAN MAHASISWA BARU DENGAN MENGGUNAKAN METODE REGRESI LINEAR SEDERHAN,” Juournal Bayesian, vol. Vol.1 No.1, 2021.
[6] A. Darmawan, N. Kustian, and W. Rahayu, “Implementasi Data Mining Menggunakan Model SVM untuk Prediksi Kepuasan Pengunjung Taman Tabebuya,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 2, no. 3, p. 299, 2018, doi: 10.30998/string.v2i3.2439.
[7] L. Harianti Hasibuan, S. Musthofa, P. Studi Matematika, and U. Imam Bonjol Padang, “Journal of Science and Technology Penerapan Metode Regresi Linear Sederhana Untuk Prediksi Harga Beras di Kota Padang,” J. Sci. Technol., vol. 2, no. 1, pp. 85–95, 2022.
[8] P. Katemba and R. K. Djoh, “Prediksi Tingkat Produksi Kopi Menggunakan Regresi Linear,” J. Ilm. Flash, vol. 3, no. 1, p. 42, 2017, doi: 10.32511/flash.v3i1.136.
Published
2024-02-12
How to Cite
RIZKI, Fahrizal; IRAWAN, Eka; SAFII, M.. PENERAPAN METODE REGRESI LINEAR SEDERHANA DALAM MEMPREDIKSI TANDAN BUAH SEGAR MASUK DI PKS DOLOK ILIR. Jurnal Manajamen Informatika Jayakarta, [S.l.], v. 4, n. 1, p. 28-34, feb. 2024. ISSN 2797-0930. Available at: <https://journal.stmikjayakarta.ac.id/index.php/JMIJayakarta/article/view/1301>. Date accessed: 13 nov. 2024. doi: https://doi.org/10.52362/jmijayakarta.v4i1.1301.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.