Application Of Data Mining On Hijab Sales In Elzatta Gallery Pondok Ungu Permai Using Apriori Algorithm
Abstract
At the Elzatta Gallery branch in Pondok Ungu Permai Bekasi, sales information is not well organized, so the data is only an archive and will not be processed in the future, so it is useless, the date of purchase and the products that consumers buy are. not well organized making it challenging to find the best-selling products. Utilization of this data is done through data mining to find correlations with consumer purchasing habits, which products are sold the most at the same time, or what can be called associations between products. It is necessary to apply an application to group data according to trends that occur simultaneously at events using the a priori algorithm. It is expected that the application of the a priori algorithm in this study can find patterns in the form of products that are often purchased together. In the data mining method, researchers use an a priori algorithm to find products that can be purchased simultaneously to find out the relationship between goods and to find out which products sell the most, therefore researchers conduct sales research. data such as sample studies. In the Rapidminer test, it is shown that the highest support and trust scores are achieved when you buy a bottom, you buy an internal head, which has 56.6% 98.1% support. And when you buy a tunic, buy the hem with 50% 97.8% confidence backing.
Downloads
References
[2] D. Maulana and M. Kiptiyah, “Analisa Pembelian Konsumen Dengan Menggunakan Algoritma Apriori Pada Galeri Elzatta Cikarang,” J. Teknol. Pelita Bangsa, vol. 10, pp. 18–26, 2019.
[3] I. Qoni and A. T. Priandika, “ANALISIS MARKET BASKET UNTUK MENENTUKAN ASOSSIASI RULE DENGAN ALGORITMA APRIORI ( STUDI KASUS : TB . MENARA ),” J. Teknol. dan Sist. Inf., vol. 1, no. 2, pp. 26–33, 2020.
[4] R. Saputra and A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.
[5] D. M. Sinaga, A. P. Windarto, H. S. Tambunan, and I. S. Damanik, “Data Mining Menggunakan Metode Asosiasi Apriori untuk Merekomendasi Pola Obat Pada Puskesmas,” J. Inf. Syst. Res., vol. 3, no. 2, pp. 143–149, 2022, doi: 10.47065/josh.v3i2.1237.
[6] N. Lestari, “Penerapan Data Mining Algoritma Apriori Dalam Sistem Informasi Penjualan,” Edik Inform., vol. 3, no. 2, pp. 103–114, 2017, doi: 10.22202/ei.2017.v3i2.1540.
[7] Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Pada Supermarket Sejahtera Lhokseumawe,” Techsi, vol. 6, no. 1, pp. 134–155, 2015, doi: 10.29103/TECHSI.V7I1.184.
[8] D. T. Larose and C. D. Larose, Data Mining and Predictive Analytics. Canada: John Wiley & Sons, Inc, 2015.
[9] W. Sahara, S. D. Saragih, and A. P. Windarto, “Teknik Asosiasi Datamining Dalam Menentukan Pola Penjualan dengan Metode Apriori,” TIN Terap. Inform. Nusant., vol. 2, no. 12, pp. 684–689, 2022, doi: 10.47065/tin.v2i12.1577.
[10] T. Suryaudin, “Implementasi Data Mining Untuk Menganalisa Pola Penjualan Barang Dengan Menggunakan Algoritma Apriori,” Simki-Techsain, vol. 02, no. 04, 2019.
[11] Z. Azmi, M. Zarlis, and V. Yasin, “Perceptron Dengan Input Citra Untuk Pengenalan Huruf Rusia,” Pros. SeNTIK STI&K, vol. 2, pp. 111–116, 2018, [Online]. Available: https://ejournal.jak-stik.ac.id/files/journals/2/articles/sentik2018/3156/3156.pdf
[12] R. Buaton, M. Zarlis, and V. Yasin, “Konsep Data Mining Dalam Implementasi,” Jakarta: Mitra Wacana Media, vol. 1, 2021, [Online]. Available: https://www.mitrawacanamedia.com/Konsep-Data-Mining-dalam-Implementasi
[13] M. Awaludin et al., “Optimization of Naïve Bayes Algorithm Parameters for Student Graduation Prediction at Universitas Dirgantara Marsekal Suryadarma,” J. Inf. Syst. Informatics Comput., vol. 6, no. 1, pp. 91–106, 2022, doi: 10.52362/jisicom.v6i1.785.
[14] H. Heriyanto, V. Yasin, and A. B. Yulianto, “Vipos application development design,” J. Eng. Technol. Comput., vol. 1, no. 1, pp. 19–31, 2022, [Online]. Available: https://journal.binainternusa.org/index.php/jetcom/article/view/3
[15] V. Yasin, “Tools Rekayasa Perangkat Lunak dalam Membuat Pemodelan Desain Menggunakan Unified Modeling Language (UML),” TRIDHARMADIMAS J. Pengabdi. Kpd. Masy. Jayakarta, vol. 1, no. 2, pp. 139–150, 2021, doi: https://doi.org/10.52362/tridharmadimas.v1i2.666.
[16] H. Hamidah, V. Yasin, R. Hartawan, and A. Z. Sianipar, “Designing a warehouse management information system:(Cases Study: PT. Fatijja Digital Indonesia),” J. Math. Technol., vol. 1, no. 2, pp. 91–103, 2022, [Online]. Available: http://journal.binainternusa.org/index.php/matech/article/view/75
[17] V. Yasin, M. Zarlis, O. S. Sitompul, and P. Sihombing, “Hierarchical Of Grid Partition (HGP) For Measuring The Similarity Of Data In Optimizing Data Accuracy,” Webology, vol. 19, no. 2, pp. 1495–1514, 2022, [Online]. Available: https://www.webology.org/abstract.php?id=1369

This work is licensed under a Creative Commons Attribution 4.0 International License.