Comparative study of application of C4.5 algorithm and naïve bayes in selection partners of cooperation at PT. Citra Pesona Gemilang
Abstract
Currently, there are many companies whose line of business is education-oriented, which currently prioritizes technology as a source of information, and before a company enters into a cooperation contract with a vendor providing information technology equipment, many things need to be considered in determining the selection of partners where this consideration is very important to find out the prospect of profit that will be generated by the company from the cooperation. This research takes a case study at PT. Citra Pesona Gemilang whose company is engaged in providing various kinds of school needs. The cooperation partner of PT Citra Pesona Gemilang is a vendor of technology devices. In the research conducted, the authors use a decision-making method with the C4.5 algorithm and Naïve Bayes to determine the selection of the best cooperation partners. The selection is seen based on the quality and quantity of the product/service, the price of the product/service, the legality of the vendor, the superiority/reliability of the partner. The result of this study is to compare the level of accuracy produced by the two algorithms, namely the C4.5 algorithm and the Naïve Bayes algorithm in determining the selection of partners in the provision of information technology tools.
Downloads
References
Negara (PLN) Persero Area Pelayanan Di Samarinda. eJournal Ilmu Komunikasi.
[2]. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0:
Step-By-Step Data Mining Guide. USA: SPSS Inc.
[3]. Eska. (2016). Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4.5.
JURTEKSI (Jurnal Teknologi dan Sistem Informasi).
[4]. Han, Jiawei et al . (2012). Data Mining Concepts and Techniques. Waltham: Elsevier Inc.
[5]. Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naïve Bayes untuk Rekomendasi Pakaian Wanita. Jurnal
Informatika UBSI.
[6]. Kennardi, Akhmad Budi. (2016). Penerapan Data Mining Untuk Prediksi Nilai Tukar Petani Tanaman Pangan Di
Indonesia Dengan Metode Linear Regression Dan Support Vector Machine. Jurnal Informatika dan Bisnis.
[7]. Mardi, Y. (2016). Data Mining Klasifikasi Menggunakan Algoritma C4.5. Jurnal Edik Informatika.
[8]. Marsani Asfi, Nopi Fitrianingsih. (2020). Implementasi Algoritma Naive Bayes Classifier sebagai Sistem
Rekomendasi Pembimbing Skripsi. InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan).
[9]. O.Brien, James A. (2010). Management Information System. New York: Mc Graw Hill Irwin.
[10]. Pramadani, Setiadi. (2014). Penerapan Data Mining Untuk Klasifikasi Prediksi Penyakit ISPA (Infeksi Saluran
Pernapasan Akut) Dengan Algoritma Decision Tree. Jurnal Sarjana Teknik Informatika.
[11]. Stanton, Jeffrey, Robert W. De Graaf. (2013). An Introduction to Data Science. New York: Creative Commons.
[12]. Yogasetya Suhanda, Ike Kurniati, Siti Norma. (2020). Penerapan Metode Crisp-DM Dengan Algoritma K-Means
Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik. Jurnal Teknologi Informatika dan Komputer.

This work is licensed under a Creative Commons Attribution 4.0 International License.