Implementasi artificial neural network dalam mendeteksi penyakit hati (liver)
Abstract
Acute liver disease can affect liver function, but can identify the patient's clinical and physical symptoms. One of the problems faced by society today is the delay in treatment of liver disease patients, most patients do not carry out self-examination until an advanced stage is found. To overcome this problem, we need a system that can determine whether a person is a patient with liver disease, so that they can carry out routine checks as soon as possible and allow liver disease patients to get timely treatment. The system can generate classification with the help of data mining algorithms. In this paper, Liver Patients have been investigated using an Artificial Neural Network model to predict a Liver Patient or not and analysis using ANN with Python was used to determine the effect of input variables based on data in the literature and obtained an accuracy of 74%.
Downloads
References
[2] G. Putra Suwandi, N. Hidayat, and Suprapto, “Sistem Diagnosis Penyakit Mata Menggunakan Metode Fuzzy Tsukamoto,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 1, pp. 582–586, 2019.
[3] C. Y. Gobel, “Sistem Pakar Penyakit Liver Menggunakan K- Nearest Neighbors Algoritm Berbasis Website,” Ilk. J. Ilm., vol. 10, no. 2, pp. 152–159, 2018, doi: 10.33096/ilkom.v10i2.296.152-159.
[4] C. Liang and L. Peng, “An automated diagnosis system of liver disease using artificial immune and genetic algorithms,” J. Med. Syst., vol. 37, no. 2, 2013, doi: 10.1007/s10916-013-9932-9.
[5] M. M. Musleh, E. Alajrami, A. J. Khalil, B. S. Abu-nasser, A. M. Barhoom, and S. S. Abu-naser, “Predicting Liver Patients using Artificial Neural Network,” vol. 3, no. 10, pp. 1–11, 2019.
[6] A. P. Ayudhitama and U. Pujianto, “Analisa 4 Algoritma Dalam Klasifikasi Liver Menggunakan Rapidminer,” J. Inform. Polinema, vol. 6, no. 2, pp. 1–9, 2020, doi: 10.33795/jip.v6i2.274.
[7] M. Hassoon, M. S. Kouhi, M. Zomorodi-Moghadam, and M. Abdar, “Rule Optimization of Boosted C5.0 Classification Using Genetic Algorithm for Liver disease Prediction,” 2017 Int. Conf. Comput. Appl. ICCA 2017, pp. 299–305, 2017, doi: 10.1109/COMAPP.2017.8079783.
[8] K. Thirunavukkarasu, A. S. Singh, M. Irfan, and A. Chowdhury, “Prediction of liver disease using classification Algorithms,” 2018 4th Int. Conf. Comput. Commun. Autom. ICCCA 2018, no. July 2020, pp. 1–3, 2018, doi: 10.1109/CCAA.2018.8777655.
[9] M. Banu Priya, P. Laura Juliet, and P. R. Tamilselvi, “Performance Analysis of Liver Disease Prediction Using Machine Learning Algorithms,” Int. Res. J. Eng. Technol., vol. 5, no. 1, pp. 206–211, 2018, [Online]. Available: www.irjet.net.
[10] M. Abdar, M. Zomorodi-Moghadam, R. Das, and I. H. Ting, “Performance analysis of classification algorithms on early detection of liver disease,” Expert Syst. Appl., vol. 67, pp. 239–251, 2017, doi: 10.1016/j.eswa.2016.08.065.
[11] M. S. D. Dr. S. Vijayarani1, “Liver Disease Prediction using SVM and Naïve Bayes Algorithms,” Int. J. Sci. Eng. Technol. Res., vol. 4, no. 4, pp. 816–820, 2015.
[12] N. Nahar and F. Ara, “Liver Disease Prediction by Using Different Decision Tree Techniques,” Int. J. Data Min. Knowl. Manag. Process, vol. 8, no. 2, pp. 01–09, 2018, doi: 10.5121/ijdkp.2018.8201.
[13] S. Sontakke, J. Lohokare, and R. Dani, “Diagnosis of liver diseases using machine learning,” 2017 Int. Conf. Emerg. Trends Innov. ICT, ICEI 2017, pp. 129–133, 2017, doi: 10.1109/ETIICT.2017.7977023.
[14] A. K. M. S. Rahman, F. M. Javed Mehedi Shamrat, Z. Tasnim, J. Roy, and S. A. Hossain, “A comparative study on liver disease prediction using supervised machine learning algorithms,” Int. J. Sci. Technol. Res., vol. 8, no. 11, pp. 419–422, 2019.
[15] N. Musyaffa and B. Rifai, “Model Support Vector Machine Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Liver,” JITK (Jurnal Ilmu Pengetah. Dan Teknol. Komputer), vol. 3, no. 2, pp. 189–194, 2018, doi: https://doi.org/10.33480/jitk.v3i2.

This work is licensed under a Creative Commons Attribution 4.0 International License.