Analisis Komparatif Lasagna Plots dan Spaghetti Plots untuk Visualisasi Big Data Longitudinal Kesehatan Pekerja

  • Nabillah Rahmatiah Tangke Institut Pertanian Bogor
  • Riza Rahmah Angelia Institut Pertanian Bogor
  • Syaifullah Yusuf Ramadhan Institut Pertanian Bogor
  • Anwar Fitrianto Institut Pertanian Bogor
  • Rachmat Bintang Yudhianto Institut Pertanian Bogor

Abstract

Visualisasi data longitudinal skala besar menghadapi tantangan over-plotting dan kesulitan interpretasi ketika menggunakan spaghetti plots tradisional. Penelitian ini bertujuan membandingkan efektivitas lasagna plots sebagai alternatif visualisasi untuk big data longitudinal kesehatan pekerja. Metode penelitian menggunakan pendekatan komparatif dengan dataset 8270 observasi dari 3792 pekerja industri Indonesia periode 2024-2025, mencakup komponen pemeriksaan kesehatan berkala dan paparan okupasional. Data divisualisasikan menggunakan spaghetti plots dan lasagna plots dengan berbagai strategi dynamic sorting (entire-row dan cluster sorting). Hasil analisis menunjukkan distribusi risiko 84.8% kategori rendah-sedang dan 15.2% sedang-tinggi. Lasagna plots dengan entire-row sorting berhasil mendelineasi stratifikasi risiko tanpa overlapping, berbeda dengan spaghetti plots yang sulit diinterpretasi pada populasi besar. Faceted lasagna plots efektif mengidentifikasi pola co-occurrence paparan dan missing data patterns yang mendukung evaluasi kualitas data. Lasagna plots dengan dynamic sorting menawarkan pendekatan visualisasi yang lebih scalable dan informatif dibanding spaghetti plots untuk mendeteksi pola perubahan, cohort effects, dan missing data patterns dalam big data longitudinal kesehatan pekerja.

Downloads

Download data is not yet available.

References

[1] Family Medicine and Community Health. (2021). "Value, challenges and practical considerations when designing longitudinal qualitative research". Family Medicine and Community Health, 9(3), e000958.
[2] Dewi, R. K., et al. (2020). "Occupational health surveillance system using periodic medical check-up data in Indonesian industry". Journal of Occupational Health, 62(1), e004.
[3] Swihart, B. J., Caffo, B., James, B. D., Strand, M., Schwartz, B. S., & Punjabi, N. M. (2010). "Lasagna plots: A saucy alternative to spaghetti plots". Epidemiology, 21(5), 621–625.
[4] PMC. (2014). "Visualising and modelling changes in categorical variables in longitudinal studies". BMC Medical Research Methodology, 14(1), 1–16.
[5] Li, M., & Chen, S. (2016). "Assessing the impact of sorting strategies on heatmap interpretation for longitudinal electronic health records". Journal of Biomedical Informatics, 63, 210–220.
[6] Zhang, J., & Wang, Y. (2023). "Comparative analysis of heatmaps and spaghetti plots in visualizing time-varying exposures". International Journal of Biostatistics, 19(1), 1–15.
[7] Cook, D., Hofmann, H., & Lewin-Koh, N. (2017). "The Lasagna Plot". In Handbook of Data Visualization (pp. 473–494). Springer, Berlin, Heidelberg.
[8] PLoS ONE. (2015). "medplot: A Web Application for Dynamic Summary and Flexible Presentation of Longitudinal Data". PLoS ONE, 10(12), e0144933.
[9] Das, S., Biswas, L., Mukherjee, T., Biswas, K., & Pal, S. K. (2022). "Predictive ability of Framingham risk score in Indian population-A retrospective study in a tertiary care hospital in patients with first acute coronary syndrome". Asian Journal of Medical Sciences, 13(8), 133–139.
[10] Kasim, S. S., Ibrahim, N., Malek, S., Ibrahim, K. S., Aziz, M. F., Song, C., ... & Nasir, N. M. (2023). "Validation of the general Framingham Risk Score (FRS), SCORE2, revised PCE and WHO CVD risk scores in an Asian population". The Lancet Regional Health–Western Pacific, 35, 100727.
[11] Kementerian Kesehatan RI. (2018). "Riset Kesehatan Dasar (Riskesdas) 2018". Jakarta: Kementerian Kesehatan RI.
[12] Maharani, A., Sujarwoto, Praveen, D., Oceandy, D., Tampubolon, G., & Patel, A. (2019). "Cardiovascular disease risk factor prevalence and estimated 10-year cardiovascular risk scores in Indonesia: The SMARThealth Extend study". PloS one, 14(4), e0215219.
[13] Nature Communications. (2024). "Global burden of cardiovascular diseases attributed to low physical activity and high salt intake". Nature Communications, 15(1), 1–11.
[14] Open Heart. (2018). "Performance of a Framingham cardiovascular risk model among Indians and Europeans in New Zealand and the role of body mass index and social deprivation". Open Heart, 5(1), e000720.
[15] Sibarani, M. H., Wijaya, I. P., Rizka, A., Soewondo, P., Riyadina, W., Rahajeng, E., ... & Tahapary, D. L. (2022). "Cardiovascular disease prediction model for Indonesian adult population with prediabetes and diabetes mellitus: The Bogor Cohort study of Noncommunicable Diseases Risk Factors". Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16(1), 102330.
[16] World Health Organization. (2021). "Cardiovascular diseases (CVDs)". Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[17] Yuliani, M. P., Sibarani, M. H., Wijaya, I. P., Rizka, A., Soewondo, P., Riyadina, W., ... Tahapary, D. L. (2022). "Cardiovascular disease prediction model for Indonesian adult population with prediabetes and diabetes mellitus: The Bogor Cohort study of Noncommunicable Diseases Risk Factors". Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16(1), 102330.
Published
2025-11-10
How to Cite
TANGKE, Nabillah Rahmatiah et al. Analisis Komparatif Lasagna Plots dan Spaghetti Plots untuk Visualisasi Big Data Longitudinal Kesehatan Pekerja. Journal of Information System, Applied, Management, Accounting and Research, [S.l.], v. 9, n. 4, p. 1493-1503, nov. 2025. ISSN 2598-8719. Available at: <https://journal.stmikjayakarta.ac.id/index.php/jisamar/article/view/2108>. Date accessed: 12 nov. 2025. doi: https://doi.org/10.52362/jisamar.v9i4.2108.