Penerapan Algoritma K-Nearest Neighbor untuk Prediksi Kelulusan Siswa di SD Negeri 1 Kedungsari

  • Muhammad Affikri Universitas Indraprasta PGRI, Jakarta
  • Meri Chrismes Aruan Universitas Indraprasta PGRI, Jakarta
  • Muhamad Irsan Universitas Indraprasta PGRI, Jakarta

Abstract

Student graduation is an important indicator in measuring the effectiveness of the learning process and the success of educational institutions. Low graduation rates can be influenced by various factors, such as academic grades, attendance, and other factors. Using the K-Nearest Neighbor algorithm method, the distance between training data attributes and new input data attributes will be predicted using the Euclidean Distance calculation. Graduation factors considered include grades, attendance, extracurricular activities, attitudes, achievements, and parental education. The results of the study show that the program produces a prediction system with maximum accuracy. However, there are still several program shortcomings that need to be improved, such as increasing the amount of data and also considering the influence of other factors.

Downloads

Download data is not yet available.

References

[1] A. S. Arwildayanto and W. T. Sumar, “Analisis kebijakan pendidikan kajian teoretis, eksploratif, dan
aplikatif,” Education Policy Analysis: Theoretical, Exploratory, and Application]. Bandung, Indonesia: Cendekia Press, 2018.
[2] Sani Susanti, Desy Natalia Manurung, Lio Je Cio Ginting, Mildani Ulfa Nazha, and Romauli Siregar,
“Kualifikasi Penentuan Kelulusan dan Analisis Penilaian Pendidikan Melalui Kemampuan Peserta Didik,” Semantik : Jurnal Riset Ilmu Pendidikan, Bahasa dan Budaya, vol. 2, no. 3, pp. 43–50, Jun. 2024, doi: 10.61132/semantik.v2i3.756.
[3] N. Nurmaryam and M. Musyarapah, “Standar Kompetensi Lulusan (SKL) Dan Implementasinya Di Madrasah
Aliyah Negeri Kapuas (Mata Pelajaran Al-Qur’an Hadis),” Al Qalam: Jurnal Ilmiah Keagamaan dan Kemasyarakatan, vol. 16, no. 6, p. 2094, Dec. 2022, doi: 10.35931/aq.v16i6.1390.
[4] W. Wuryandani, B. Maftuh, and dan Dasim Budimansyah, “PENDIDIKAN KARAKTER DISIPLIN DI
SEKOLAH DASAR,” 2015.
[5] D. Supriadi, E. Suryana, J. Meranti Raya Nomor, and S. Lebar Bengkulu, “2023 Penerapan K-Nearest
Neighbor Untuk Klasifikasi Tingkat Kelulusan Pada Siswa Sma Negeri 11 Kota Bengkulu,” 2023.
[6] M. Wahyudi, L. Pujiastuti, and S. Solikhun, “Penerapan Data Mining Dalam Mengelompokkan Data
Pengangguran Terbuka Menurut Provinsi Menggunakan Algoritma K-Means,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2020, pp. 432–440.
[7] A. Wanto et al., Data Mining: Algoritma dan Implementasi. Yayasan kita menulis, 2020.
[8] S. Puspa, “Ahmad Yusuf 3) 1), 3) Sistem Informasi, Fakultas Sains dan Teknologi, UIN Sunan Ampel,
Surabaya 2) Matematika, Fakultas Sains dan Teknologi,” 2021.
[9] M. Kholil, “Seminar Nasional Sistem Informasi dan Teknologi Informasi 2018 SENSITEK 2018 STMIK
Pontianak,” 2018.
[10] R. S. Daulay, “Analisis Kritis dan Pengembangan Algoritma K-Nearest Neighbor (KNN): Sebuah Tinjauan
Literatur,” Jurnal Pendidikan Sains dan Komputer, vol. 4, no. 02, pp. 131–141, Dec. 2024, doi: 10.47709/jpsk.v4i02.5055.
Published
2025-11-08
How to Cite
AFFIKRI, Muhammad; ARUAN, Meri Chrismes; IRSAN, Muhamad. Penerapan Algoritma K-Nearest Neighbor untuk Prediksi Kelulusan Siswa di SD Negeri 1 Kedungsari. Journal of Information System, Applied, Management, Accounting and Research, [S.l.], v. 9, n. 4, p. 1388-1402, nov. 2025. ISSN 2598-8719. Available at: <https://journal.stmikjayakarta.ac.id/index.php/jisamar/article/view/2065>. Date accessed: 12 nov. 2025. doi: https://doi.org/10.52362/jisamar.v9i4.2065.