PENERAPAN K-MEANS CLUSTERING UNTUK PEMETAAN PRODUKTIVITAS PADI DAN PREDIKSI PANEN DI KABUPATEN INDRAMAYU

  • Riyan Farismana Politeknik Negeri Indramayu

Abstract

Indonesia is a country where the majority of people consume rice, making the issue of rice harvest productivity a concern for many parties. Efforts to maintain food security, especially the availability of rice, are a shared responsibility, where efforts that can be made are to maintain and predict rice production results in areas that are National Rice Granaries. Indramayu is one of the national rice producing districts, which has 31 sub-districts with varying amounts of rice production. The large difference in rice production between sub-districts is an important problem that affects rice harvests in Indramayu, so improvements need to be made, including clustering, namely grouping sub-districts based on harvest potential using K-Means clustering by looking at historical harvest data for the past 5 years between 2019–2023. Then compared using the orange data mining application. K-Means clustering either manually or using orange3 produces three clusters with the same sub-district cluster results. This data is also used to predict future harvest results using the random forest algorithm in Orange3. Analysis of K-Means clustering results and prediction results shows that sub-districts in the lower cluster have the potential for a greater percentage reduction in harvest than clusters with a higher harvest category.

Downloads

Download data is not yet available.

References

[1] D. M. Azzahra et al., “Faktor-faktor yang mempengaruhi impor beras di Indonesia.”. E-Journal Perdagangan Industri dan Moneter Vol. 9. No. 3, September-Desember 2021. ISSN: 2303-1204 (online)
[2] D. Isnawati, “Analisis Permintaan Bahan Pokok Beras Pada Saat Pandemi Covid-19 Di Indonesia”. Nomicpedia: Journal of Economics and Business Innovation Volume 2 Nomor 1, Maret, 2022. E-ISSN : 2775-4774. Available: https://journal.inspirasi.or.id/index.php/nomicpedia
[3] M. Yusuf Nugroho and U. Duta Bangsa Surakarta, “Analisis Faktor-Faktor yang Mempengaruhi Produksi Padi di Sumatera Menggunakan Metode Regresi Linier.” Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB) 2023. E-ISSN 2962-1968
[4] Naira Afshari Putri, Raden Roro Aura Putri Indira, and Vany Seftiani Kurnia, “Dampak Pemberhetian Ekspor Beras Dari Negara-Negara Pengekspor Utama Terhadap Ketahanan Pangan Indonesia,” Jurnal Ilmu Manajemen, Ekonomi dan Kewirausahaan, vol. 4, no. 1, pp. 107–114, Jan. 2024, doi: 10.55606/jimek.v4i1.2680.
[5] D. Riyatno, M. A. S. Tyas, and A. Muksin, “Upaya Pemerintah Kabupaten Indramayu dalam Mengembangkan Pertanian Pangan sebagai Potensi Unggulan,” Jurnal Syntax Admiration, vol. 4, no. 9, pp. 2194–2201, Sep. 2023, doi: 10.46799/jsa.v4i9.1015.
[6] Dinas Ketahanan Pangan Dan Pertanian, “Jumlah Produksi Padi Berdasarkan Kecamatan di Kabupaten Indramayu,” https://opendata.indramayukab.go.id/dataset/jumlah-produksi-padi-berdasarkan-kecamatan-di-kabupaten-indramayu-2.
[7] D. T. Cahaya et al., “PENERAPAN METODE K-MEANS CLUSTERING UNTUK PENGELOMPOKAN POTENSI PADI DI KOTA PAGAR ALAM,”. JATI (Jurnal Mahasiswa Teknik Informatika). Vol. 8 No. 2, April 2024.
[8] M. Firman, A. Halik, and L. Septiana, “Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional. Analisa Data Untuk Prediksi Daerah Rawan Bencana Alam Di Jawa Barat Menggunakan Algoritma K-Means Clustering,” Journal of Information System, Applied, Management, Accounting and Research, vol. 6, no. 4, pp. 856–870, 2022, doi: 10.52362/jisamar.v6i4.939.
[9] A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 20–28, Feb. 2023, doi: 10.58602/jaiti.v1i1.22.
[10] A. Satria, R. M. Badri, and I. Safitri, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digital Transformation Technology, vol. 3, no. 2, pp. 389–398, Sep. 2023, doi: 10.47709/digitech.v3i2.2852.
[11] Jailani, M. Syahran, et al., “Teknik Pengumpulan Data Dan Instrumen Penelitian Ilmiah”. HSAN: Jurnal Pendidikan Islam, 2023, 1.2: 1-9. E-ISSN : 1987 – 1298.
[12] Y. Yuliska and K. U. Syaliman, “Literatur Review Terhadap Metode, Aplikasi dan Dataset Peringkasan Dokumen Teks Otomatis untuk Teks Berbahasa Indonesia,” IT Journal Research and Development, vol. 5, no. 1, pp. 19–31, Jul. 2020, doi: 10.25299/itjrd.2020.vol5(1).4688.
[13] Harmain, Ahmad, et al “Normalisasi Data Untuk Efisiensi K-Means Pada Pengelompokan Wilayah Berpotensi Kebakaran Hutan Dan Lahan Berdasarkan Sebaran Titik Panas”. TEKNIMEDIA: Teknologi Informasi dan Multimedia, 2021, 2.2: 83-89. E-ISSN : 2722 - 6271
[14] R. A. Indraputra and R. Fitriana, “K-Means Clustering Data COVID-19”. Jurnal Teknik Industri Vol. 10 No. 3. ISSN 1411-6340.
[15] F. Marisa et al., “Digitasi Produktivitas Panen Padi Berbasis K-Means Clustering,” SMARTICS Journal, vol. 7, no. 1, 2021, doi: 10.21067/smartics.v7i1.5270.
[16] E. Mardiani et al., “Membandingkan Algoritma Data Mining Dengan Tools Orange untuk Social Economy,” Digital Transformation Technology, vol. 3, no. 2, pp. 686–693, Nov. 2023, doi: 10.47709/digitech.v3i2.3256.
[17] Adiguno, Siswo; Syahira, Yohanni; Yetri, Milfa. “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda”. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2022, 1.4: 275-281.
[18] N. I. Hommy D. E. Sinaga, “Perbandingan double moving average dengan double exponential smoothing pada peramalan bahan medis habis pakai”. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 2018, 4.2: 197-204. ISSN : 2407 – 1811.
[20] T. Tendean, and W. Purba, “Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means,” SAINTEK (Jurnal Sains dan Teknologi), vol. 1, no. 2, 2020 pp. 5–11.
Published
2024-08-04
How to Cite
FARISMANA, Riyan. PENERAPAN K-MEANS CLUSTERING UNTUK PEMETAAN PRODUKTIVITAS PADI DAN PREDIKSI PANEN DI KABUPATEN INDRAMAYU. Journal of Information System, Applied, Management, Accounting and Research, [S.l.], v. 8, n. 3, p. 589-605, aug. 2024. ISSN 2598-8719. Available at: <https://journal.stmikjayakarta.ac.id/index.php/jisamar/article/view/1572>. Date accessed: 16 sep. 2024. doi: https://doi.org/10.52362/jisamar.v8i3.1572.