RANCANGAN PROGRAM ANALISIS TINGKAT KEMISKINAN PENDUDUK INDONESIA MENGGUNAKAN METODE RANTAI MARKOV

Poverty Level Analysis Program Design Of Indonesia's Population Using The Markov Chain Method

  • Ngarap Immanuel Manik Universitas Bina Nusantara, Jakarta
  • Meutia Hanafiah Universitas Bina Nusantara, Jakarta

Abstract

The problem of poverty is one of the important problems that must be addressed by the government. In connection with this, a computer program is designed that can analyze the poverty level of the Indonesian population using the Markov Chain method. In designing this program, secondary data from BPS is used on the Number of Poor Population, Percentage of Poor Population (%), Poverty Line (Rp), Poverty Depth Index (P1), Poverty Severity Index (P2) from 2019-2022 at the provincial level in Indonesia. . The data analysis technique used in forecasting the poverty rate in the Indonesian Territory is the Markov Chain method. All data from variables are grouped into 7 stages. The transition matrix shows the magnitude of the value transfer from one stage to another, arranged based on the displacement from one year to the next. The forecast results of all poverty variables indicate that there is a tendency for a decrease in the level of poverty in the territory of Indonesia and the program design uses Java SE.

Downloads

Download data is not yet available.

Author Biographies

Ngarap Immanuel Manik, Universitas Bina Nusantara, Jakarta

Applied Mathematics

Meutia Hanafiah, Universitas Bina Nusantara, Jakarta

Applied Mathematics

References

[1] Abdurachman, Edi. Konsep Dasar Markov Chain serta kemungkinan penerapannya di bidang pertanian. Departement Pertanian.(2010) http://www.litbang.deptan.go.id/warta-ip/pdf-file/edi.pdf

[2] Avenzora, Ahmad., Sitorus, Jeffry R.H., Aritonang, Julita L.B. (2005). Analisis dan Perhitungan Tingkat Kemiskinan Tahun. BPS (Badan Pusat Statistika). Jakarta (2015)
http://achmad.blog.undip.ac.id/files/markov.pdf

[3] Badan Pusat Statistika. Berita Resmi Statistik, Profil Kemiskinan Di Indonesia Maret 2010. BPS (Badan Pusat Statistika). http://www.bps.go.id/brs_file/kemiskinan-01jul10.pdf

[4] Mariany, Henny. Analisis Peramalan Harga Emas Nasional dengan Metode Multivariate Autoregressive berbasiskan komputer. Binus University. Jakarta.(2010).

[5] Priyanto, Eko. Analisis Kuantitatif BullWhip Effect pada Supplay Chain Management Berbasis Komputer menggunakan Moving Average, Exponential Smoothing dan Metode Peramalan ARCH, dan Garch. Binus University. Jakarta.(2010)

[6] Rambe, A.J.M. Teknik Rantai Markov Dalam Analisa Posisi Dan Perpindahan Fungsi Produksi Sejenis (Studi Kasus Merek Handphone di Kota Medan). Universitas Sumatera Utara. Medan. (2015)

[7] Stewart, William J. Probability, Markov Chains, queues, and simulation (the mathematical basis of performace modeling). Princeton University, Amerika Serikat.(2019)

[8] World Bank Institute. Introduction to Poverty Analysis atau Dasar-Dasar Analisis Kemiskinan. BPS( Badan Pusat Statistika), Jakarta. (2002)

[9] Besse Arnawisuda Ningsi, Dinda Novianda Putri, (Application of Markov Chain to Prediction Poverty in Banten Province, JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 7, No. 1, January 2023, pp. 47-57
Published
2024-07-06
How to Cite
MANIK, Ngarap Immanuel; HANAFIAH, Meutia. RANCANGAN PROGRAM ANALISIS TINGKAT KEMISKINAN PENDUDUK INDONESIA MENGGUNAKAN METODE RANTAI MARKOV. Journal of Information System, Applied, Management, Accounting and Research, [S.l.], v. 8, n. 3, p. 493-504, july 2024. ISSN 2598-8719. Available at: <https://journal.stmikjayakarta.ac.id/index.php/jisamar/article/view/1509>. Date accessed: 04 july 2025. doi: https://doi.org/10.52362/jisamar.v8i3.1509.