IMPLEMENTASI ALGORITMA DECISION TREE DALAM OPTIMASI PENILAIAN KINERJA OPERASIONAL

  • Rijwan Maulana Universitas Siber Asia, Jakarta
  • Cian Ramadhona Hassolthine Universitas Siber Asia, Jakarta
  • Muhammad Ikhwani Saputra Universitas Siber Asia, Jakarta

Abstract

Companies nowadays derive significant benefits from adopting digital systems in their operations. Politeknik LP3I Jakarta, for example, an educational institution, has implemented digitalization to optimize operational performance assessments by auditors. Manual audit assessments consume significant time and effort. Applying intelligent algorithms, such as Decision Tree, has become key to enhancing efficiency and accuracy in decision-making during assessments. The objective of this research is to evaluate the effectiveness of operational performance assessments by identifying and addressing these issues, implementing the Decision Tree algorithm. Decision Tree, which has evolved through a series of algorithms like C5.0, is the appropriate choice as it can make decisions based on specific conditions from the input data. The Decision Tree method and C5.0 Algorithm will help in rapidly and accurately calculating assessments based on criteria. This implementation can minimize manual audit activities, save time, and improve the accuracy of operational performance evaluations. The outcome of this research is higher efficiency in the operational performance assessment process, allowing auditors to focus on strategic aspects and in-depth analysis. Thus, Politeknik LP3I Jakarta and similar institutions can experience positive impacts from technology integration in their operational management, supporting progress and enhancing the quality of educational services.

Downloads

Download data is not yet available.

References

[1] E. D. Sikumbang, “Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori,” vol. 4, no. 1, pp. 156–161, 2019.
[2] R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,” J. Teknol. Rekayasa, vol. 3, no. 1, p. 89, 2019, doi: 10.31544/jtera.v3.i1.2018.89-98.
[3] Rabcan, J.; Levashenko, V.; Zaiteseva, E.; Kvassay, M.; Subbotin, S. Application of Fuzzy Decission Tree for Signal Classification. IEEE Trans. Ind. Inform. 2019, 15, 5425-5434.
[4] P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,” Innov. Res. Informatics, vol. 1, no. 2, pp. 63– 69, 2019, doi: 10.37058/innovatics.v1i2.918.
[5] P. Studi, T. Informatika, U. Harapan, and M. Sumatera, “Decision Tree Penentuan Masa Studi Mahakaryawan Prodi Teknik Informatika ( Studi Kasus : Fakultas Teknik dan Komputer Universitas Harapan Medan ),” vol. 5341, no. April, pp. 16–24, 2019.
[6] I. Sutoyo, F. T. Informasi, U. Bina, and S. Informatika, “IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI,” vol. 14, no. 2, pp. 217–224, 2019.
[7] A. C. Wijaya, N. A. Hasibuan, and P. Ramadhani, “Implementasi Algoritma C5 . 0 Dalam Klasifikasi Pendapatan Masyarakat ( Studi Kasus : Kelurahan Mesjid Kecamatan Medan Kota ),” Inf. dan Teknol. Ilm., vol. 13, pp. 192–198, 2019.
[8] P. W. Kastawan, D. M. Wiharta, and M. Sudarma, “Implementasi Algoritma C5.0 pada Penilaian Kinerja Pegawai Negeri Sipil,” Maj. Ilm. Teknol. Elektro, vol. 17, no. 3, p. 371, 2019, doi: 10.24843/mite.2018.v17i03.p11.
[9] F. Hadi, “Penerapan Data Mining Dalam Menganalisa Pemberian Pinjamana Dengan Menggunakan Metode Algoritma C5 . 0 ( Studi Kasus : Koperasi Jasa Keuangan Syariah Kelurahan Lambung Bukik ),” J. KomTekInfo, vol. 4, no. 2, pp. 214–223, 2018
Published
2024-02-27
How to Cite
MAULANA, Rijwan; HASSOLTHINE, Cian Ramadhona; SAPUTRA, Muhammad Ikhwani. IMPLEMENTASI ALGORITMA DECISION TREE DALAM OPTIMASI PENILAIAN KINERJA OPERASIONAL. JISAMAR (Journal of Information System, Applied, Management, Accounting and Research), [S.l.], v. 8, n. 1, p. 161-174, feb. 2024. ISSN 2598-8719. Available at: <https://journal.stmikjayakarta.ac.id/index.php/jisamar/article/view/1432>. Date accessed: 14 apr. 2024. doi: https://doi.org/10.52362/jisamar.v8i1.1432.