Klasifikasi Multi Class Pada Metode Kerja Jarak Jauh Menggunakan Algoritma Decision Tree dan Imbalance Data
Abstract
The COVID-19 pandemic that has hit the world has forced workers to work from home to prevent the spread of the virus. However, until the pandemic is over, based on survey conducted on 100 employee, found that working from home (Work from Home) is still a choice that many workers are interested in because it considered to provide flexibility and save more times. But some of them prefer to work from the office because it is considered easier than to focus and can increase productivity and more interested mixed mode of working. The analysis and comparison determined to find out about which work locations are more popular with workers. One solution to overcome this problem is that a classification method is needed to group the factors that influence the choice of work location. The classification method used for data processing is the Decision Tree method. The method for class imbalance problems uses the Synthetic Minority Over-sampling Technique (SMOTE) method. Tests were execute using Decision Tree and SMOTE split data which obtained an accuracy of up to 83.08% at a ratio of 0.5 (5:5). In this research, it was found that 13% of workers preferred to work from home, 25% chose to work from an office, and 27% chose mixed work models.
Downloads
References
[2] D. Rianto Rahadi, “DILEMA WORK FROM HOME DIMASA PANDEMI STUDI KAWASAN INDUSTRI BEKASI,” 2021. [Online]. Available: http://ejournal.unsri.ac.id/index.php/jmbs
[3] D. Mustajab et al., “THE INTERNATIONAL JOURNAL OF APPLIED BUSINESS TIJAB Fenomena Bekerja dari Rumah sebagai Upaya Mencegah Serangan COVID-19 dan Dampaknya terhadap Produktifitas Kerja Working from Home Phenomenon as an Effort to Prevent COVID-19 Attacks and Its Impacts on Work Productivity”.
[4] E. Sutoyo, M. Asri Fadlurrahman, J. Telekomunikasi Jl Terusan Buah Batu, K. Dayeuhkolot, K. Bandung, and J. Barat, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network,” Jurnal Edukasi dan Penelitian Informatika, vol. 6, no. 3, pp. 379–385, 2020.
[5] N. Indriani, E. Rainarli, K. Evita Dewi, T. dan Ilmu Komputer, and J. Dipati Ukur, “JURNAL INFOTEL Informatika-Telekomunikasi-Elektronika Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen,” Jurnal Infotel, vol. 9, no. 4, 2017, doi: 10.20895/infotel.v9i4.
[6] B. H. Mawaridi and M. Faisal, “Rekomendasi Merk Mobil Untuk Calon Pembeli Menggunakan Algoritma Decision Tree,” Jurnal Informatika, vol. 10, no. 2, pp. 157–162, Oct. 2023, doi: 10.31294/inf.v10i2.16000.
[7] A. Franseda, W. Kurniawan, S. Anggraeni, and W. Gata, “Integrasi Metode Decision Tree dan SMOTE untuk Klasifikasi Data Kecelakaan Lalu Lintas,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 3, p. 282, Jul. 2020, doi: 10.26418/justin.v8i3.40982.
[8] M. Shuja, S. Mittal, and M. Zaman, “Effective Prediction of Type II Diabetes Mellitus Using Data Mining Classifiers and SMOTE,” 2020, pp. 195–211. doi: 10.1007/978-981-15-0222-4_17.
[9] Ni’ma Kholila, “Merdeka belajar twitter,” Jurnal Ilmiah Teknik Informatika, vol. 15, no. 2, pp. 252–261, 2021, Accessed: Oct. 11, 2022. [Online]. Available: https://doi.org/10.35457/antivirus.v15i2.1866
[10] P. Ristoski and H. Paulheim, “Semantic Web in Data Mining and Knowledge Discovery: A Comprehensive Survey.” [Online]. Available: https://ssrn.com/abstract=3199217
[11] A. Muzakir and R. A. Wulandari, “Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree,” Scientific Journal of Informatics, vol. 3, no. 1, 2016, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji
[12] R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 646, Dec. 2021, doi: 10.32493/informatika.v5i4.7622.
[13] E. Priyanti, “Penerapan Decision Tree Pada Penentuan Lokasi Waralaba,” JURNAL SWABUMI, vol. 11, no. 1, pp. 8–12, 2023.
[14] J. Han et al., “Designing Data-Intensive Web Applications,” 2012.
[15] T. Iskandar Zulkarnain Maulana Putra, A. Farhan Bukhori, dan Ilmu Pengetahuan Alam, and U. Gadjah Mada, “Model Klasifikasi Berbasis Multiclass Classification dengan Kombinasi Indobert Embedding dan Long Short-Term Memory untuk Tweet Berbahasa Indonesia (Classification Model Based on Multiclass Classification with a Combination of Indobert Embedding and Long Short-Term Memory for Indonesian-language Tweets),” Jurnal Ilmu Siber dan Teknologi Digital (JISTED), vol. 1, no. 1, pp. 1–28, 2022, doi: 10.35912/jisted.v1i1.1509.
[16] C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE,” AITI: Jurnal Teknologi Informasi, vol. 18, no. Agustus, pp. 173–184, 2021.
[17] A. Nurhopipah and U. Hasanah, “Dataset Splitting Techniques Comparison For Face Classification on CCTV Images,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 14, no. 4, p. 341, Oct. 2020, doi: 10.22146/ijccs.58092.
This work is licensed under a Creative Commons Attribution 4.0 International License.