Online News Hoax Detection Using Machine Learning Classification Algorithms

  • Chandra Kesuma Universitas Bina Sarana Informatika, Purwokerto, Indonesia

Abstract

The rapid growth of digital media usage has significantly increased the spread of hoax news. Such information can lead to misinformation, social anxiety, and public misunderstanding. This study proposes an automatic detection approach for Indonesian-language hoax news using machine learning-based classification algorithms. A dataset consisting of 3,000 Indonesian news articles collected from social media platforms and online news portals was employed and validated using a fact-checking website (TurnBackHoax.id). The proposed method involves text preprocessing, feature extraction using Term Frequency–Inverse Document Frequency (TF-IDF), and classification using Naive Bayes and Support Vector Machine (SVM) algorithms. Model performance is evaluated using accuracy, precision, recall, and F1-score metrics. Experimental results indicate that the SVM algorithm achieves better performance than Naive Bayes in detecting hoax news. The findings demonstrate that machine learning-based classification can provide an effective solution for automatic hoax detection and can be further developed for practical implementation.

Author Biography

Chandra Kesuma, Universitas Bina Sarana Informatika, Purwokerto, Indonesia

URL Author Scopus ID: Chandra Kesuma*, https://www.scopus.com/authid/detail.uri?authorId=58289249700

References

[1] Alghamdi, J dkk. (2023). “A comprehensive survey on machine learning approaches for fake news detection”. Multimedia Tools and Applications. https://link.springer.com/content/pdf/10.1007/s11042-023-17470-8.pdf
[2] Alshuwaier, FA & Alsulaiman, FA. (2025). Fake News Detection Using Machine Learning and Deep Learning Algorithms: A Comprehensive Review and Future Perspectives. MDPI Vol. 14 Issue 9 https://www.mdpi.com/2073-431X/14/9/394
[3] Haq, MZ dkk. (2024). “Algoritma Naïve Bayes untuk Mengidentifikasi Hoaks di Media Sosial”. Jurnal Minfo Polgan Vol.13 No.1 (2024). https://jurnal.polgan.ac.id/index.php/jmp/article/view/13937
[4] A. Sudrajat, R. R. Wulandari, and E. Syafwan. (2022). “Indonesian Language Hoax News Classification Based on Naïve Bayes,” *Journal of Applied Intelligent System*, vol. 7, no. 1, May 2022. DOI: 10.33633/jais.v7i1.5985. [Online]. https://publikasi.dinus.ac.id/jais/article/view/5985
[5] R. Embun Safira and A. Nurlayli. (2025). “Comparative analysis of Indonesian news validity detection accuracy using machine learning,” *Journal of Engineering and Applied Technology*, vol. 4, no. 1, 2025. DOI: 10.21831/jeatech.v4i1.58791
[6] M. D. Desriansyah, I. Utna Sari, and Z. Zulfahmi. (2024)). “Analisis Efektivitas Algoritma Machine Learning dalam Deteksi Hoaks: Pada Berita Digital Berbahasa Indonesia,” *Jurnal Sistem Informasi dan Informatika (JISKA)*, vol. 3, no. 1, 2024. DOI: 10.47233/jiska.v3i1.2024
[7] R. Rakhmat Sani, Y. A. Pratiwi, S. Winarno, E. D. Udayanti, and F. Alzami. (2022). “Analisis Perbandingan Algoritma Naive Bayes Classifier dan Support Vector Machine untuk Klasifikasi Berita Hoax pada Berita Online Indonesia,” *Jurnal Masyarakat Informatika*, vol. 13, no. 2, Nov. 2022. DOI: 10.14710/jmasif.13.2.47983
[8] A. Kartika Dewi, N. F. Rahmadani, R. Syahputri, L. R. Nasution, and M. Furqon. (2025). “Deteksi Berita Hoax Pada Platform X Menggunakan Pendekatan Text Mining dan Algoritma Machine Learning,” *Data Sciences Indonesia*, vol. 5, no. 1, Jul. 2025. DOI: 10.47709/dsi.v5i1.6011. [Online]. https://jurnal.itscience.org/index.php/dsi/article/view/6011
[9] I. Indra, A. U. Hamdani, S. Setiawati, Z. D. Mentari, and M. H. Purnomo. (2024). “Comparison of K-NN, SVM, and Random Forest Algorithm for Detecting Hoax on Indonesian Election 2024,” *Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI*, vol. 13, no. 1, Mar. 2024. DOI: 10.23887/janapati.v13i1.76079. [Online]. https://ejournal.undiksha.ac.id/index.php/janapati/article/view/76079
[10] M. Y. Ridho and E. Yulianti. (2024). “From Text to Truth: Leveraging IndoBERT and Machine Learning Models for Hoax Detection in Indonesian News,” *Jurnal Ilmiah Teknik Elektro Komputer dan Informatika*, vol. 10, no. 3, Sep. 2024. DOI: 10.26555/jiteki.v10i3.29450. [Online]. https://journal.uad.ac.id/index.php/JITEKI/article/view/29450
[11] A. Sudrajat, R. R. Wulandari, & E. Syafwan. (2025). Indonesian Language Hoax News Classification Based on Naïve Bayes, JAIS, 2025.
[12] V. Prisscilya & A. S. Girsang. (2024). Classification of Indonesia False News Detection Using Bertopic and IndoBERT, JIST, 2024.
[13] M. D. Desriansyah et al.. (2024).Analisis Efektivitas Algoritma Machine Learning dalam Deteksi Hoaks, JISKA, 2024.
[14] A. Kartika Dewi et al. (2025). Deteksi Berita Hoax Pada Platform X…, Data Sciences Indonesia, 2025.
[15] M. F. Lazuardi et al. (2023). Hoax News Detection Using Passive Aggressive Classifier…, Jurnal Teknik Informatika, 2023.
[16] T. A. Roshinta et al. (2023). Sistem Deteksi Berita Hoax Berbahasa Indonesia Bidang Kesehatan, REMIK, 2023.
[17] T. Faujar Mustafa & H. Alfianti. (2025). Klasifikasi Berita Palsu Berbahasa Indonesia…, JSIT, 2025.
[18] D. Samudra A. Suryama & S. Jatmiko. (2025). Development of an Indonesian Hoax Detection System…, J-INTECH, 2025.
[19] A. Halim Tandiano & D. Jollyta. (2025). Classification of Fake News… Using SVM, JURTEKSI, 2025.
[20] R. P. Fernandes & R. T. Shita. (2025). Penerapan Metode SVM dan Random Forest…, Ticom, 2025.
Published
2026-01-30
How to Cite
KESUMA, Chandra. Online News Hoax Detection Using Machine Learning Classification Algorithms. International Journal of Informatics, Economics, Management and Science, [S.l.], v. 5, n. 1, p. 82-94, jan. 2026. ISSN 2809-8471. Available at: <https://journal.stmikjayakarta.ac.id/index.php/ijiems/article/view/2287>. Date accessed: 07 feb. 2026. doi: https://doi.org/10.52362/ijiems.v5i1.2287.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.