PENERAPAN ALGORITMA BACKPROPOGATION DALAM PREDIKSI JUMLAH PENDUDUK DI PROVINSI SUMATERA UTARA

  • Pretty Natalia Napitupulu STIKOM Tunas Bangsa, Pematang Siantar, Sumatera Utara
  • M. Safii STIKOM Tunas Bangsa, Pematang Siantar, Sumatera Utara

Abstract

Total Population is the total number of individuals living in an area or country at any given time.country at any given time. However, a large population has several negative effects of social instability, poverty, reduced quality of life, and increased unemployment.quality of life, and increased unemployment. This research discusses the application of the Backpropagation algorithm in predicting population in the province of North Sumatra province. The purpose of this research is to make predictions that can help local governments in development planning and more effective management of resources more effectively. The Backpropagation method is used in training of the artificial neural network model using historical data on the population population and the factors that influence the growth. The results of experimental results show that the resulting model is able to provide fairly accurate predictions with an acceptable error rate. This paper presents the results of research that aims to apply the Backpropagation algorithm in an effort to predict population in North Sumatra province from 2013-2022 using Microsoft Excel and Matlab version 2011b for data processing and analysis. version 2011b for data processing and analysis. The architecture uses three models, namely: 4-5-1, 4-10-1, 4-15-1. The most accurate architecture model is 3-15-1 model which has a Mean Squared Error (MSE) of 0.00000034 and 100% accuracy rate with time 00:05 at epoch 92.

References

[1] M. A. P. Hutabarat, Handrizal, and Jalaluddin, “Penerapan Algoritma Backpropagation Dalam Memprediksi Jumlah Penduduk di Kecamatan Pematang Bandar Berdasarkan Nagori / Kelurahan,” J. Inf. Syst. Res., vol. 1, no. 2, pp. 63–69, 2020.
[2] A. Lasarudin and R. Maku, “Prediksi Pertumbuhan Jumlah Penduduk Menggunakan Algoritma Neural Network,” J. Ilmu Komput., vol. 2, no. 2, p. 37, 2022, doi: 10.31314/juik.v2i2.1715.
[3] S. F. Manurung, A. Andriansya, J. Permana, and R. Pangestu, “Pemanfaatan Algoritma JST untuk Menentukan Model Prediksi Umur Harapan Hidup Saat Lahir,” 2022.
[4] A. Wanto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” vol. 2, pp. 37–44, 2019.
[5] P. Nugroho, “Prediksi Nasabah Bank Menggunakan Algoritma Backpropagation,” vol. 3, no. 3, pp. 89–94, 2021.
[6] M. Julham, S. Sumarno, F. Anggraini, A. Wanto, and S. Solikhun, “Penerapan Jaringan Syaraf Tiruan dalam Memprediksi Tingkat Kriminal di Kabupaten Simalungun Menggunakan Algoritma Backpropagation,” vol. 1, no. 1, pp. 64–73, 2022.
[7] D. V. Hutabarat, M. Fauzan, A. P. Windarto, and F. Rizki, “Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran,” vol. 2, no. 1, pp. 21–29, 2021.
[8] D. P. Resda, J. H. Purba, A. Sitanggang, and M. Fani, “Aplikasi Penerapan Jaringan Syaraf Tiruan untuk Memprediksi Tingkat Pengangguran di Kota Batam dengan Menggunakan Algoritma Pembelajaran Backpropagation,” vol. 15, no. 1, pp. 91–96, 2023.
[9] P. Seminar et al., “Implementasi Algoritma Backpropagation dalam Memprediksi Jumlah Mahasiswa Baru pada AMIK- STIKOM Tunas Bangsa Pematangsiantar,” no. September, pp. 795–803, 2019.
[10] V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” vol. 2, no. 3, pp. 271–279, 2021.
[11] F. Halawa, “Penerapan Algoritma Genetika Dan Backpropagation Neural Network Untuk Memprediksi Jumlah Penduduk Kota Medan,” vol. 7, no. 3, pp. 203–207, 2020.
[12] I. Asih, R. Simbolon, F. Yatussa, A. Wanto, and I. Pendahuluan, “Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia,” vol. 4, no. 2, 2018.
[13] I. Riadi, “Penerapan JST Backpropagation untuk Prediksi Siswa Penerima Bantuan,” vol. 6, no. April, pp. 952–959, 2022, doi: 10.30865/mib.v6i2.3870.
[14] F. Jefansa, “Penerapan Jaringan Syaraf Tiruan dalam Meramalkan Produksi Kopi Berdasarkan Provinsi,” J. Infomedia, vol. 7, no. 1, p. 1, 2022, doi: 10.30811/jim.v7i1.2873.
[15] I. I. Ridho et al., “Penerapan Artificial Neural Network dengan Metode Backpropagation Dalam Memprediksi Harga Saham (Kasus: PT. Bank BCA, Tbk),” J. Ris. Sist. Inf. Dan Tek. Inform., vol. 8, pp. 295–303, 2023, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik
Published
2024-02-12
How to Cite
NAPITUPULU, Pretty Natalia; SAFII, M.. PENERAPAN ALGORITMA BACKPROPOGATION DALAM PREDIKSI JUMLAH PENDUDUK DI PROVINSI SUMATERA UTARA. Jurnal Manajamen Informatika Jayakarta, [S.l.], v. 4, n. 1, p. 15-27, feb. 2024. ISSN 2797-0930. Available at: <http://journal.stmikjayakarta.ac.id/index.php/JMIJayakarta/article/view/1300>. Date accessed: 02 dec. 2024. doi: https://doi.org/10.52362/jmijayakarta.v4i1.1300.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.